Dynamic changes in root hydraulic properties in response to nitrate availability.

نویسندگان

  • Vít Gloser
  • Maciej A Zwieniecki
  • Colin M Orians
  • N Michele Holbrook
چکیده

Changes in root hydraulic resistance in response to alterations in nitrate supply were explored in detail as a potential mechanism that allows plants to respond rapidly to changes in their environment. Sunflower (Helianthus annuus cv. Holiday) plants grown hydroponically with limited nitrate availability (200 micromol l(-1)) served as our model system. Experimental plants were 6-9-weeks-old with total dry mass of 2-4 g. Root pressurization of intact plants and detached root systems was used to elucidate the temporal dynamics of root hydraulic properties in sunflower plants following changes in external nitrate availability. The response was rapid, with a 20% decrease in hydraulic resistance occurring within the first hour after the addition of 5 mM nitrate and the magnitude of the effect was dependent on nitrate concentration. The change in root hydraulic resistance was largely reversible, although the temporal dynamics of the response to nitrate addition versus nitrate withdrawal was not symmetric (a gradual decrease in resistance versus its fast increase), raising the possibility that the underlying mechanisms may also differ. Evidence is presented that the observed changes in root hydraulic properties require the assimilation of nitrate by root cells. The hydraulic resistance of roots, previously stimulated by the addition of nitrate, increased more than in control plants in low nitrate under anoxia and that suggests a key role of aquaporin activity in this response. It is proposed that a rapid decrease in root hydraulic resistance in the presence of increased nitrate availability is an important trait that could enhance a plant's ability to compete for nitrate in the soil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrate control of root hydraulic properties in plants: translating local information to whole plant response.

The sessile lifestyle of plants constrains their ability to acquire mobile nutrients such as nitrate. Whereas proliferation of roots might help in the longer term, nitrate-rich patches can shift rapidly with mass flow of water in the soil. A mechanism that allows roots to follow and capture this source of mobile nitrogen would be highly desirable. Here, we report that variation in nitrate conce...

متن کامل

Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis.

Plant root systems can respond to nutrient availability and distribution by changing the three-dimensional deployment of their roots: their root system architecture (RSA). We have compared RSA in homogeneous and heterogeneous nitrate and phosphate supply in Arabidopsis. Changes in nitrate and phosphate availability were found to have contrasting effects on primary root length and lateral root d...

متن کامل

Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey

Nitrate is an essential nutrient for plants, and crops depend on its availability for growth and development, but its presence in agricultural soils is far from stable. In order to overcome nitrate fluctuations in soil, plants have developed adaptive mechanisms allowing them to grow despite changes in external nitrate availability. Nitrate can act as both nutrient and signal, regulating global ...

متن کامل

Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar.

Nitrogen availability has a strong influence on plant growth and development. In this study, we examined the effect of nitrogen availability on xylogenesis in hybrid poplar (Populus trichocarpa x deltoides H11-11). Saplings of hybrid poplar were fertilized for 33 d with either high or adequate levels of ammonium nitrate. We observed enhanced radial growth, wider vessels and fibres and thinner f...

متن کامل

Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments

Nitrogen (N) is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than 2000 genes exhi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 58 10  شماره 

صفحات  -

تاریخ انتشار 2007